загрузка...
загрузка...
На головну

 Вирішення задач |  самоперевірка |  Контрольні роботи |  Лекції та практичні заняття |  Правила виконання і оформлення контрольних робіт |  Межа, безперервність функції. |  V. Інтегральне числення |  завдання 1-10 |  завдання 11-20 |  завдання 21-30 |

завдання 31-40

  1.  I. До чого прагне педагогіка, якою вона має бути і в чому її завдання?
  2.  I. Цілі і завдання дисципліни
  3.  I. Мета та завдання дисципліни
  4.  I. Мета та завдання дисципліни, ЇЇ МІСЦЕ В НАВЧАЛЬНОМУ ПРОЦЕСІ.
  5.  I. Мета та завдання ВИВЧЕННЯ ДИСЦИПЛІНИ
  6.  I. Цілі і завдання освоєння дисципліни
  7.  II. Постановка завдання побудови динамічної моделі.

Знайти похідні заданих функцій:

При обчисленні похідних потрібно користуватися наведеною вище таблицею похідних.

Рішення.

Скористаємося формулами:

де

тоді

Скористаємося формулами:

де

тоді

в)

Дану функцію можна записати у вигляді статечної функції:

 , де

І, отже

Зауважимо, що

значить,

тоді

Дану функцію можна записати як:  , де

тоді

Для відшукання останньої похідною застосуємо формулу:

значить,

Скористаємося формулами:



 завдання 31-40,41-50,51-60 |  Завдання 41 -50
загрузка...
© um.co.ua - учбові матеріали та реферати