Головна

Кільця Ньютона

  1. II закон Ньютона.
  2. III закон Ньютона.
  3. Второй закон Ньютона
  4. Второй закон Ньютона , или , где - результирующая сила, действующая на материальную точку.
  5. З використанням формул Ньютона
  6. Закон Ньютона-Рихмана.
  7. Закон сохранения импульса, который справедлив для замкнутой механической системы тел, вытекает из II и III законов Ньютона.

Для утворення кілець Ньютона паралельний пучок світла направляють нормально на плоску поверхню BC з великим радіусом R кривизни плоскоопуклої лінзи, яка дотикається в точці M до плоскої скляної пластинки (рис. 2.7). Після відбивання від опуклої поверхні лінзи і дотичної до неї поверхні пластини світло поширюється у зворотному напрямку паралельним пучком. При накладанні відбитих хвиль виникають інтерференційні смуги однакової товщини. Оскільки результат накладання двох відбитих хвиль залежить від товщини прошарку між лінзою і скляною пластиною, то для всіх точок, що знаходяться на однаковій відстані r від точки M, тобто тих, що утворюють коло, буде однакова умова для інтерференційного максимуму, або мінімуму.

Нехай d - товщина повітряного прошарку на відстані r від точки M (рис. 2.7). Оптична різниця ходу Δ між променем, який відбився від межі поділу повітряний шар - скляна пластина, і променем, який зазнав часткового відбивання на межі поділу опукла поверхня лінзи - повітряний шар, дорівнює

, (2.17)

де доданок враховує втрату півхвилі при відбиванні світла.

Так як лінза і пластина виготовлені зі скла, показник заломлення якого більший від показника заломлення повітря, то буде зі знаком "+".

Якщо прийняти , то можна показати [1], що радіус m-го світлого кільця Ньютона, виходячи з умови інтерференційних максимумів для відбитого світла, становить

; (m=1, 2, 3,...) (2.18) а радіус m-го темного кільця для відбитого світла визначається з умови:

; . (2.19) В прохідному світлі ; (m=0, 1, 2, 3...), ( ) а ; (m=1, 2, 3...).

В співвідношеннях (2.18), (2.19), (2.20) і (2.21) -довжина монохроматичної хвилі у вакуумі; - радіус кривизни опуклої поверхні лінзи.

10. Принцип Гюйгенса-Френеля. Метод зон Френеля.

Дифракцією називається сукупність явищ, що спостерігаються при поширенні світла в середовищі з різкими неоднорідностями (поблизу границь непрозорих або прозорих тіл, через малі отвори) і які пов'язані із зміною напрямку поширення світлових хвиль (порівняно з напрямком, передбаченим геометричною оптикою).

Дифракція, зокрема, приводить до огинання світловими хвилями перешкод і проникнення світла в область геометричної тіні.

Явище дифракції пояснюється за допомогою принципу Гюйгенса: кожна точка, до якої доходить хвиля, служить джерелом вторинних хвиль, а обвідна цих хвиль дає положення хвильового фронту в наступний момент часу.

Принцип Гюйгенса - суто геометричний спосіб побудови хвильових поверхонь - розв'язує лише задачу про напрямок поширення хвильового фронту, але не зачіпає, по суті, питання про амплітуду, а отже, і про інтенсивність хвиль, що поширюються в різних напрямках. Френель вклав у принцип Гюйгенса фізичний зміст, доповнивши його ідеєю інтерференції вторинних хвиль. Принцип Гюйгенса-Френеля можна виразити такими положеннями (див. також рис. 2.8):

1. Під час розрахунку амплітуди світлових коливань, що збуджуються джерелом в довільній точці М, джерело можна замінити еквівалентною йому системою вторинних джерел - малих ділянок dS будь-якої замкненої допоміжної поверхні S, проведеної так, щоб вона охоплювала джерело і не охоплювала розглядувану точку М. Вторинні джерела, які еквівалентні джерелу , когерентні між собою, тому вторинні хвилі, збуджені ними, інтерферують. Розрахунок інтерференції найпростіший у випадку, якщо S - хвильова поверхня (сфера радіусом ) для світла джерела , оскільки при цьому фази коливань всіх вторинних джерел однакові.

2. Амплітуда коливань, що збуджуються в точці М вторинним джерелом, пропорційна до площі dS відповідної ділянки хвильової поверхні, і обернено пропорційна до відстані r від неї до точки М і залежить від кута між зовнішньою нормаллю до хвильової поверхні і напрямком від елемента dS до точки М (рис. 2.8): , (2.22)

де - фаза коливань в місці розміщення хвильової поверхні, a - величина, яка пропорційна до амплітуди первинних хвиль в точках елемента dS; монотонно спадає від 1 при до0 при (вторинні джерела не випромінюють назад); кут називається кутом дифракції.

Результуюче коливання в точці М є суперпозицією коливань , взятих для всієї хвильової поверхні S: (2.23)

Ця формула є аналітичним виразом принципу Гюйгенса-Френеля.

Метод зон Френеля

За допомогою принципу Гюйгенса-Френеля можна обґрунтувати з хвильових властивостей світла закон прямолінійного поширення світла в однорідному середовищі. Френель розв'язав цю задачу, розглянувши взаємну інтерференцію вторинних хвиль, і застосував прийом, який отримав назву методу зон Френеля.

Знайдемо в довільній точці М амплітуду світлової хвилі, що поширюється в однорідному середовищі від точкового джерела .

Згідно з принципом Гюйгенса-Френеля замінимо дію джерела дією уявних джерел, які розміщені на допоміжній поверхні S, що є однією з хвильових поверхонь хвилі, яка поширюється від джерела (рис. 2.9).

Ця допоміжна поверхня є поверхнею сфери з центром в . Френель розбив хвильову поверхню S на кільцеві зони такого розміру, щоб відстані від країв зони до М відрізнялись на ( , де - показник заломлення середовища), тобто

.

Подібне розбивання хвильової поверхні S на зони можна виконати, провівши з точки М концентричні сфери радіусами ; ; ; ... .Точки сфери S, що лежать від точки М на відстанях ; ; і т.д. утворюють межі 1-ї, 2-ї, 3-ї і т.д. зон Френеля. Оскільки коливання від сусідніх зон проходять до точки М відстані, які відрізняються на , то в точку М вони надходять з протилежними фазами і при накладанні ці коливання будуть взаємно ослаблюватися. Тому амплітуда результуючого коливання в точці М

, (2.24)

де , , ... - амплітуди коливань, що збуджуються 1-ю, 2-ю,..., m-ю зонами. В цей вираз всі амплітуди коливань від непарних зон входять зі знаком "+", а від парних зон - зі знаком "-".

Величина залежить від площі m-ї зони і кута між зовнішньою нормаллю до поверхні зони в якій-небудь її точці і прямою, яка напрямлена з цієї точки в точку М.

Із збільшенням номера зони m зростають кут і відстань від зони до точки М. Згідно із принципом Гюйгенса-Френеля це приводить до монотонного зменшення інтенсивності випромінювання в напрямку точки M. Тому

.

Загальне число N зон Френеля, які вміщуються на частині сфери, яка повернена до точки М, дуже велике. Тому можна вважати, що в межах не дуже великих змін m залежність від m є лінійною, і амплітуда коливань, яка викликана якою-небудь m-ю зоною, дорівнює півсумі амплітуд коливань, що викликані -ю і -ю зонами. Тобто . (2.25)

Тоді амплітуда результуючого коливання в точці М матиме такий вигляд: , (2.26)

оскільки усі вирази, що стоять у дужках, дорівнюють нулю. Тоді амплітуда коливань, що створюється в довільній точці М сферичною хвильовою поверхнею, дорівнює половині амплітуди коливань, що створюється однією центральною зоною. Дія всієї хвильової поверхні на точку М зводиться до дії її малої ділянки, меншої, ніж центральна зона.

Отже, поширення світла від джерела світла до точки М відбувається так, немовби світловий потік поширюється всередині дуже вузького каналу вздовж M, тобто прямолінійно. У такий спосіб хвильовий принцип Гюйгенса-Френеля дозволяє пояснити прямолінійне поширення світла в однорідному середовищі.

Інтенсивність світла в точці M можна значно збільшити, якщо закрити всі парні або непарні зони Френеля. Тоді результуюча амплітуда коливань відповідно дорівнюватиме: або .

Екран, який перекриває всі парні або непарні зони Френеля, називається зонною пластинкою. Пластинка має складатися з прозорих або непрозорих кілець, радіуси яких дорівнюють . Радіуси прозорих кілець підраховують для m=0, 2, 4,..., непрозорих - для m=1, 3, 5,...

11. Дифракція світла. Дифракція Френеля та Фраунгофера. Дифракційна решітка.



  13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   Наступна

III. Іонні діелектрики. Іонна поляризація. | Енергетичні зони в кристалах | Розподіл електронів по енергетичних зонах. Валентна зона і зона провідності. Метали, діелектрики і напівпровідники | Власна провідність напівпровідників | Домішкова провідність напівпровідників | Р-n перехід і його вольт-амперна характеристика | Магнітне поле прямолінійного провідника зі струмом. | Магнітне поле колового струму. | Вихрове електричне поле. | Смуги однакового нахилу |

© um.co.ua - учбові матеріали та реферати