На головну

монографічний метод

  1. Case-метод Баркера
  2. I. 2. 1. Марксистсько-ленінська філософія - методологічна основа наукової психології
  3. I. 2.4. Принципи та методи дослідження сучасної психології
  4. I. Методичні рекомендації
  5. I. Методичні рекомендації
  6. I. Методичні рекомендації
  7. I. Методичні рекомендації

Ідея монографічного методу належить німецькому педагогу А. В. Грубе (19в., «Керівництво до числення в елементарній школі ...»).

Його послідовники:

- Німецький педагог В. А. Лай (К. 19 - н. 20в.) В «Керівництві до первісного навчання арифметиці ...»,

- В. А. Евтушевский (К. 19в.) «Методика арифметики»,

- Д. Л. Волковський (У 1914 р) цей метод переніс в дитячий сад, видавши книгу «Дитячий світ в числах».

У перекладі монографічний метод означає «опис числа». Суть методу полягає в наступному: оскільки діти здатні відтворити групу предметів в межах 100, то кожне число вивчається шляхом розглядання відповідної кількості точок (або рисок), порівнюється з іншими числами (з яких чисел воно складається, скільки разів в нього вміщається те чи інше число, на скільки воно більше або менше інших чисел). Арифметичних дій дітей не навчає, тому що вважається, що вони самі випливають із знання дітьми складу чисел. Весь досліджуваний матеріал розташовувався за числами і вивчалися всі дії для кожного числа.

У порівнянні з Грубе, Лай використовував спеціальні числові фігури, тобто кожне число він зображував в зручній для сприйняття формі, і вважав, це якщо діти легко відтворюють ці числові фігури, то вони запам'ятали відповідне число.

Евтушевский цей метод спростив, пропонуючи вести навчання в межах 20, а не 100.

Волковський рекомендував цей метод для дітей до школи, пропонуючи вести навчання в межах 10.

У сучасній методиці ознайомлення з числами використані позитивні сторони монографічного методу: відтворення груп предметів, застосування числових фігур і рахункових карток, вивчення складу числа.



Попередня   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   Наступна

Методика для 4-го етапу. | Методика формування уявлень про поняття вчора, сьогодні, завтра | Загальна характеристика змісту ФЕМП | Предлогіческая підготовка | Форми організації навчання дітей математики | Формування розуміння складу числа з 2-х менших. | Навчання рішенню арифметичних завдань. | Запис цифр і знаків. | Знайомство з 2-м десятком. | Наступність у навчанні математики в початковій школі та дошкільних закладах |

© um.co.ua - учбові матеріали та реферати