загрузка...
загрузка...
На головну

Тема: Відеосистема ПК

  1. I. Тема: «Печальные комедии» как особый жанр драматургии А. Н. Островского
  2. II. Тема: Сергий Радонежский
  3. III. Тема: Последний император
  4. IV. Тема: Первый женский университет
  5. Правовая система: понятие, структура, значение для формирования гражданского общества.
  6. Рыночная система: процессы функционирования.
  7. Система: понятие, элементы, компоненты, связи

План

1. Монітор з електронно-променевою трубкою.

2. Дисплеї на рідких кристалах (Liquid Crystal Display - LCD).

3. Основні параметри моніторів.

4. Відеоадаптер.

У перших комп'ютерах моніторів не було. Користувачі мали набір світлодіодів, що блимали і роздрук результатів на принтері. З розвитком комп'ютерної техніки з'явились монітори і зараз вони є необхідною частиною базової конфігурації персонального комп'ютера.

Монітор (дисплей) - це стандартний пристрій виведення, призначений для візуального відображення текстових та графічних даних. В залежності від принципу дії, монітори поділяються на:

- монітори з електронно-променевою трубкою;

- дисплеї на рідких кристалах.

Монітор з електронно-променевою трубкою. Є подібним до телевізора. Електронно-променева трубка являє собою електронно-вакуумний пристрій у вигляді скляної колби, в горловині якої знаходиться електронна трубка, на дні - екран із шаром люмінофора. При нагріванні, електронна пушка випромінює потік електронів, які з високою швидкістю рухаються до екрана. Потік електронів (електронний промінь) проходить скрізь фокусуючу та нахиляючу котушку, що скеровують його у певну точку люмінофорного покриття екрану. Під дією електронів, люмінофор випромінює світло, яке бачить користувач. Люмінофор характеризується часом випромінювання післядії електронного потоку. Електронний промінь рухається досить швидко, розкреслюючи екран рядками зліва направо та зверху вниз. Під час розгортки, тобто пересування по екрану, промінь впливає на ті елементарні ділянки люмінофорного покриття, де має з'явитись зображення. Інтенсивність променя постійно змінюється, що обумовлює випромінювання відповідних ділянок екрана. Оскільки, випромінювання зникає дуже швидко, електронний промінь повинен неперервно пробігати по екрану, відновлюючи його.

Час випромінювання та частота поновлення зображення мають відповідати один одному. Переважно, частота вертикальної розгортки дорівнює 70-85 Гц, тобто зображення на екрані поновлюється 70-85 разів у секунду. Зниження частоти відновлення обумовлює блимання зображення, що втомлює очі. Відповідно, підвищення частоти оновлення приводить до розмивання або подвоєння контурів зображення. Монітори можуть мати як фіксовану частоту розгортки, так і різні частоти у деякому діапазоні.

Існує два режими розгортки: Interlaced (черезрядкова) та Non Interlaced (порядкова). Переважно, використовують порядкову розгортку. Промінь сканує екран порядково зверху вниз, формуючи зображення за один прохід. У режимі черезрядкової розгортки, промінь сканує екран зверху вниз, але за два проходи: спочатку непарні рядки, потім парні. Прохід при черезрядковій розгортці займає вдвічі менше часу, ніж формування повного кадру в режимі порядкової розгортки. Тому час для оновлення для двох режимів однаковий.

Екрани для моніторів з електронно-променевою трубкою є випуклі та плоскі. Стандартний монітор - випуклий. В деяких моделях використовують технологію Trinitron, в якій поверхня екрана має невелику кривину по горизонталі, по вертикалі екран абсолютно плоский. На такому екрані спостерігається менше бліків і покращена якість зображення.

По набору відтінків кольорів, що відображаються, монітори поділяються на кольорові та чорно-білі (монохромні). Монохромні монітори дешевше, але не підходять для роботи з операційною системою Windows. У кольорових моніторах використовують складніші методи формування зображення. У монохромних електронно-променевих трубках існує одна електронна пушка, у кольорових - три. Екран монохромної електронно-променевої трубки покритий люмінофором одного кольору (з жовтим, білим або зеленим випромінюванням). Екран кольорової електронно-променевої трубки складається з люмінофорних тріад (із червоним, зеленим та синім випромінюванням). Комбінації трьох кольорів надає безліч вихідних відтінків.

Дисплеї на рідких кристалах (Liquid Crystal Display - LCD).У дисплеях на рідких кристалах безбліковий плоский екран і низька потужність споживання електричної енергії (5 Вт, у порівнянні монітор з електронно-променевою трубкою споживає 100 Вт).

Існує три види дисплеїв на рідких кристалах:

- монохромний з пасивною матрицею;

- кольоровий з пасивною матрицею;

- кольоровий з активною матрицею.

Екрани LCD-моніторів (Liquid Crystal Display, рідкокристалічні монітори) зроблені з речовини (ціанофеніл), яка знаходиться в рідкому стані, але при цьому володіє деякими властивостями, властивими кристалічним тілам. Фактично це рідини, що володіють анізотропією властивостей (зокрема оптичних), пов'язаних з впорядкованістю в орієнтації молекул.

Робота РКД заснована на явищі поляризації світлового потоку. Відомо, що так звані кристали поляроїди здатні пропускати тільки ту складову світла, вектор електромагнітної індукції якої лежить у площині, паралельній оптичній площині поляроїда. Для решти світлового потоку поляроїд буде непрозорим. Таким чином поляроїд як би "просіває" світло. Даний ефект називається поляризацією світла. Коли були вивчені рідкі речовини, довгі молекули яких чутливі до електростатичного та електромагнітного поля і здатні поляризувати світло, з'явилася можливість управляти поляризацією. Ці аморфні речовини за їх схожість із кристалічними речовинами по електрооптичних властивостям, а також за здатність приймати форму ємності, назвали рідкими кристалами. Ґрунтуючись на цьому відкритті і в результаті подальших досліджень, стало можливим виявити зв'язок між підвищенням електричної напруги і зміною орієнтації молекул кристалів для забезпечення створення зображення. Перше своє застосування рідкі кристали знайшли в дисплеях для калькуляторів і в електронному годиннику, а потім їх почали використовувати в моніторах для комп'ютерів.

Екран LCD монітора являє собою масив маленьких сегментів (пікселів), якими можна маніпулювати для відображення інформації. LCD монітор має кілька шарів, де ключову роль грають дві панелі, зроблені з вільного від натрію і дуже чистого скляного матеріалу, який наивається субстрат або підкладка, які власне і містять тонкий шар рідких кристалів між собою (рис. 1).

Рис. 1. Будова сегменту рідкокристалічного монітору

На панелях є борозенки, які направляють кристали, повідомляючи їм спеціальну орієнтацію. Борозенки розташовані таким чином, що вони паралельні на кожній панелі, але перпендикулярні між двома панелями. Поздовжні борозенки виходять в результаті розміщення на скляній поверхні тонких плівок з прозорого пластика, який потім спеціальним чином обробляється. Стикаючись з борозенками, молекули в рідких кристалах орієнтуються однаково у всіх осередках. Молекули одного з різновидів рідких кристалів (нематиків) при відсутності напруги повертають вектор електричного (і магнітного) поля в світловій хвилі на деякий кут у площині, перпендикулярній осі розповсюдження пучка. Нанесення борозенок на поверхню скла дозволяє забезпечити однаковий кут повороту площини поляризації для всіх осередків. Дві панелі розташовані дуже близько один до одного. Рідкокристалічна панель висвітлюється джерелом світла (залежно від того, де він розташований, рідкокристалічні панелі працюють на відбиття або на проходження світла).

Площина поляризації світлового променя повертається на 90° при проходженні однієї панелі (рис. 2). При появі електричного поля, молекули рідких кристалів частково шикуються вертикально уздовж поля, кут повороту площини поляризації світла стає відмінним від 90° і світло безперешкодно проходить через рідкі кристали ( рис. 3).

Рис. 2. Рис. 3

Поворот площини поляризації світлового променя непомітний для ока, тому виникла необхідність додати до скляних панелей ще два інших шарів, що представляють собою поляризаційні фільтри. Ці фільтри пропускають тільки ту компоненту світлового пучка, у якої вісь поляризації відповідає заданому. Тому при проходженні поляризатора пучок світла буде ослаблений залежно від кута між його площиною поляризації і віссю поляризатора. За відсутності напруги осередок прозорий, так як перший поляризатор пропускає тільки світло з відповідним вектором поляризації. Завдяки рідким кристалам вектор поляризації світла повертається, і до моменту проходження пучка до другого поляризатора він уже повернутий так, що проходить через другий поляризатор без проблем (рис. 4а).

У присутності електричного поля повороту вектора поляризації відбувається на менший кут, тим самим другий поляризатор стає тільки частково прозорим для випромінювання. Якщо різниця потенціалів буде такою, що повороту площини поляризації в рідких кристалах не відбудеться зовсім, то світловий промінь буде повністю поглинений другим поляризатором, і екран при освітленні ззаду буде спереду здаватися чорним (промені підсвічування поглинаються в екрані повністю) (рис. 4б).

а) б)

Рис. 4.

Якщо розташувати велике число електродів, які створюють різні електричні поля в окремих місцях екрану (осередки), то з'явиться можливість при правильному управлінні потенціалами цих електродів відображати на екрані букви і інші елементи зображення. Електроди поміщаються в прозорий пластик і можуть мати будь-яку форму. Технологічні нововведення дозволили обмежити їхні розміри величиною маленької точки, відповідно на одній і тій же площі екрану можна розташувати більше число електродів, що збільшує розподільну здатність LCD монітора, і дозволяє нам відображати навіть складні зображення в кольорі. Для виведення кольорового зображення необхідне підсвічування монітора ззаду, таким чином, щоб світло виходило із задньої частини LCD дисплея. Це необхідно для того, щоб можна було спостерігати зображення з гарною якістю, навіть якщо навколишнє середовище не є світлим. Колір виходить в результаті використання трьох фільтрів, які виділяють з випромінювання джерела білого світла три основні компоненти. Комбінуючи три основні кольори для кожної точки або пікселя екрана, з'являється можливість відтворити будь-який колір.

У дисплеях на рідких кристалах із пасивною матрицею кожною коміркою керує електричний заряд (напруга), який передається скрізь транзисторну схему у відповідності з розташуванням комірок у рядках і стовпцях матриці екрана. Комірка реагує на імпульс напруги, що надходить.

У дисплеях з активною матрицею кожна комірка керується окремим транзисторним ключем. Це забезпечує вищу яскравість зображення ніж у дисплеях із пасивною матрицею, оскільки кожна комірка знаходиться під дією постійного, а не імпульсного електричного поля.

Основні параметри моніторів. З точки зору користувача, основними характеристиками монітора є розмір по діагоналі, роздільна здатність, частота регенерації (обновлення) та клас захисту.

Розмір монітора. Екран монітора вимірюється по діагоналі у дюймах. Розміри коливаються від 9 дюймів (23 см) до 42 дюймів (106 см). Чим більший екран, тим дорожчий монітор. Найпоширеними є розміри 14, 15, 17, 19 та 21 дюйми. Монітори великого розміру краще використовувати для настільних видавничих систем та графічних робіт, в яких потрібно бачити всі деталі зображення. Оптимальними для масового використання є 15- та 17-дюймові монітори.

Роздільна здатність. У графічному режимі роботи зображення на екрані монітора складається з точок (пікселів). Кількість точок по горизонталі та вертикалі, які монітор здатний відтворити чітко й роздільно називається його роздільною здатністю. Вираз "роздільна здатність 800х600" означає, що монітор може виводити 600 горизонтальних рядків по 800 точок у кожному. Стандартними є такі режими роздільної здатності: 640х480, 800х600, 1024х768, 1152х864. Ця властивість монітора визначається розміром точки (зерна) екрана. Розмір зерна екрана сучасних моніторів не перевищує 0,28 мм. Чим більша роздільна здатність, тим краща якість зображення. Якість зображення також пов'язана з розміром екрана. Так, для задовільної якості зображення в режимі 800х600 на 15-дюймовому моніторі можна обмежитися розміром зерна 0,28 мм, для 14-дюймового монітора з тим самим розміром зерна в тому самому відеорежимі якість дрібних деталей зображення буде трохи гірша.

Частота регенерації. Цей параметр також називається частотою кадрової розгортки. Він показує скільки разів за секунду монітор може повністю обновити зображення на екрані. Частота регенерації вимірюється в герцах (Гц). Чим більша частота, тим менша втома очей і тим довше часу можна працювати неперервно. Сьогодні мінімально допустимою вважається частота в 75 Гц, нормальною - 85 Гц, комфортною - 100 Гц і більше. Цей параметр залежить також від характеристик відеоадаптера.

Клас захисту монітора визначається стандартом, якому відповідає монітор із точки зору вимог техніки безпеки. Зараз загальноприйнятими вважаються міжнародні стандарти TCO-92, TCO-95, ТСО-99 і ТСО-03, які обмежують рівні електромагнітного випромінювання, ергонометричні та екологічні норми, межами, безпечними для здоров'я людини.

Відеоадаптер.Роботою монітора керує спеціальна плата, яка називається відеоадаптером (відеокартою). Разом із монітором відеокарта створює відеопідсистему персонального комп'ютера. У перших комп'ютерах відеокарти не було. В оперативній пам'яті існувала екранна ділянка пам'яті, в яку процесор заносив дані про зображення. Контролер екрана зчитував дані про яскравість окремих точок екрана з комірок пам'яті і керував розгорткою горизонтального променя електронної пушки монітора.

При переході від монохромних моніторів до кольорових і із збільшенням роздільної здатності екрана, ділянки відеопам'яті стало недостатньо для збереження графічних даних, а процесор не встигав обробляти зображення. Всі операції, що пов'язані з керуванням екрану були відокремлені в окремий блок - відеоадаптер.

Відеоадаптер має вигляд окремої плати розширення, яка вставляється у певний слот материнської плати (у сучасних ПК це є слот AGP). Відеоадаптер виконує функції відеоконтролера, відеопроцесора та відеопам'яті. За час існування ПК змінилося декілька стандартів відеоадаптерів: MDA (Monochrom Display Adapter) -монохромний, CGA(Color Graphics Adapter) - 4 кольори, EGA(Enchanced Graphics Adapter) -16 кольорів, VGA (Video Graphics Array) - 256 кольорів, SVGA(Super VGA) - до 16,7 млн. кольорів. На ці стандарти розраховані всі програми, призначені для IBM-сумісних комп'ютерів.

Сформоване графічне зображення зберігається у внутрішній пам'яті відеоадаптера, яка називається відеопам'яттю. Необхідна ємність відеопам'яті залежить від заданої роздільної здатності та палітри кольорів, тому для роботи в режимах із високою роздільною здатністю та повноцінною кольоровою гаммою потрібно якомога більше відеопам'яті. Якщо ще недавно типовими були відеоадаптери з 2-4 Мбайт відеопам'яті, то вже сьогодні нормальним вважається ємність в 16-32 Мбайт. Більшість сучасних відеокарт володіє можливістю розширення об'єму відеопам'яті до 64 Мбайт, а також властивістю, так званої, відеоакселерації. Суть цієї властивості полягає в тому, що частина операцій з побудови зображення може відбуватися без виконання математичних обчислень в основному процесорі, а чисто апаратним шляхом - перетворенням даних у спеціальних мікросхемах відеоакселератора. Відеоакселератори можуть входити до складу відеоадаптера, а можуть поставлятися у вигляді окремої плати розширення, що встановлюється на материнській платі і під'єднується до відеокарти. Розрізняють два типи відеоакселераторів: плоскої (2D) та тривимірної (3D) графіки. Перші найбільш ефективні для роботи з прикладними програмами загального призначення і оптимізовані для ОС Windows, другі орієнтовані на роботу з різними мультимедійними та розважальними програмами.

 



1   2
загрузка...
© um.co.ua - учбові матеріали та реферати