загрузка...
загрузка...
На головну

Матеріали і допустимі напруження

  1. I. Методичні рекомендації (матеріали) для викладача
  2. VI. матеріали
  3. VII. КОНТРОЛЬНО-ВИМІРЮВАЛЬНІ МАТЕРІАЛИ
  4. АКРИЛОВІ ДВОКОМПОНЕНТНІ МАТЕРІАЛИ
  5. АКРИЛОВІ Однокомпонентних МАТЕРІАЛИ
  6. Акустичні Матеріали і Технології
  7. Армуючі матеріали і їх властивості

Раніше було встановлено, що кінематичній парі черв'як-черв'ячні колесо властиві великі швидкості ковзання, що перевищують окружну швидкість черв'яка, і, як наслідок, механічне зношування, зокрема зношування при заїдання і утомлююча зношування. Тому при виборі матеріалів черв'ячної пари необхідно забезпечити хороші антифрикційні і протизадирні властивості. Найкращі результати досягаються при поєднанні високоміцної сталевої поверхні з антифрикційним матеріалом, що володіє необхідною об'ємної міцністю, наприклад бронзою.

У маловідповідальних передачах черв'як роблять з среднеугдлеродістих сталей (наприклад, марок 45, 40Х та ін.), Підданих нормалізації або поліпшення, причому твердість активних поверхонь витків H ? 320 НВ. Більш висока здатність навантаження передачі виходить, якщо черв'як з среднеуглеродистой стали (наприклад, марок 45Х, 40ХН, 35ХГСА і ін.) Піддати поверхневої або об'ємної загартуванню до твердості H ?45HRC.

Найкращі результати досягаються, якщо черв'як виготовити з низьковуглецевої сталі (наприклад, марок 20Х, 18ХГТ, 12ХНЗА і ін.) З подальшою цементацією і загартуванням до твердості H ? 56HRС, шліфуванням і поліруванням витків. Черв'яки з азотіруемих сталей (38Х2МЮА, 38Х2Ю і ін) не вимагають шліфування витків, а тільки поліруються. Для передач з колесами дуже великих діаметрів доцільно черв'яки робити бронзовими, а черв'ячні колеса - чавунними.

Конструктивно черв'яки найчастіше виготовляють заодно ціле з валом і лише в рідкісних випадках-насадними. З метою економії кольорових металів черв'ячні колеса найчастіше роблять складовими: на чавунний або сталевий центр насаджується бронзовий вінець.

Для невідповідальних, слабонавантажених і тихохідних передач при швидкостях ковзання ?s<2 м / с можливе виготовлення черв'ячного колеса з чавуну або пластмас (текстоліт, поліаміди). У разі застосування сталевих хромованих черв'яків і чавунного черв'ячного колеса гранична швидкість ковзання може бути збільшена.

Найкращими антифрикційними і протівозадірнимі властивості мають олов'яні бронзи (наприклад, БрОФ10-1, БрОНФ і ін.), Однак вони дорогі і дефіцитні, і тому застосовуються тільки в відповідальних передачах з високими швидкостями ковзання (?s > 7 м / с). Здатність навантаження передач з черв'ячними колесами з олов'яних бронз лімітується втомним зношуванням і від швидкості ковзання практично не залежить, тому верхня межа цієї швидкості для таких передач не обмежують, а допустимі контактні напруги від неї не залежать. Поряд з цим термін служби вінців черв'ячних коліс в значній мірі залежить від способу виливки заготовок (в пісок, в кокіль, відцентрова), тому допустимі напруження залежать від способу виливки, і крім того, від твердості активної поверхні віт ков черв'яка.

Значення допустимих контактних напружень [?але] Для черв'ячних коліс з олов'яних бронз та сталевих черв'яків при базі випробувань NHlim = 107 циклів навантаження наведені в табл. 8.5. Для визначення значення допускається контактної напруги [?н] При заданому числі циклів NK відмінному від бази випробувань, в розрахунок вводиться коефіцієнт довговічності ZN, Тоді:

[?н] = [?але] ZN

тут ZN=  ; NK = 60nLh ? 25 • 107, Де n - частота обертання черв'ячного колеса;

Lh - Задана довговічність передачі, ч.

Таблиця 8.5

Значення допустимих контактних напружень [?але] Для черв'ячних коліс з олов'яних бронз та сталевих черв'яків

 Матеріал і спаособ виливки sН0, МПа, при твердості поверхні витків черв'яка
 <45  > = 45
 БрОФ10-1, в пісок
 БрОФ10-1, в кокіль
 БрОНФ, відцентрова

Більш високі механічні характеристики, але істотно гіршими (в порівнянні з олов'яними бронзами) протівозадірнимі властивостями володіють безолов'яні бронзи (наприклад, БрАЖ9-4, бражної 10-4-4 і ін.), Тому їх застосовують для менш відповідальних передач при швидкостях ковзання ?s <7 м / с. Здатність навантаження передач з черв'ячними колесами з безолов'яним бронз (а також з чавунів) лімітується зношуванням при заїдання і залежить від швидкості ковзання. Значення допустимих контактних напружень [?H] Для черв'ячних коліс з чавуну або безолов'яним бронзи і сталевих черв'яків вибирають незалежно від числа циклів навантаження по табл. 8.6.

Таблиця 8.6

Значення допустимих контактних напружень [?H] Для черв'ячних коліс з чавуну або безолов'яним бронзи і сталевих черв'яків

 матеріал  [?H], МПа, при швидкості ковзання, м / с
 черв'яка  черв'ячного колеса  0,25  0,5
 Сталь 20,20Ч, цементована,  СЧ15, СЧ18      
 Сталь 45, Ст6  СЧ15, СЧ18      
 сталь загартована  БрАЖ9-4 -

Допустимі напруги вигину [?F] Для зубів черв'ячного колеса встановлюються в залежності від матеріалу, способу виливки і характеру навантаження (реверсивний, нереверсивний). Значення [?F0] При базі випробувань NHlim = 106 циклів навантаження наведені в табл. 8.7

Таблиця 8.7

Значення [?F0] При базі випробувань NHlim = 106 циклів навантаження

Для визначення значення допустимої напруги вигину за розрахункової кількості циклів NK табличне значення [?F0] Слід помножити на коефіцієнт довговічності YN рівний:

YN=

якщо Nк <106, То його приймають рівним базі випробувань NFlim = 106; якщо

Nк > 25 - 107, То приймають NK = 25 - 107.

Приклад 8.1. Розрахувати основні параметри і розміри передачі одноступінчатого черв'ячного редуктора з нижнім розташуванням архимедова черв'яка.
 Потужність на валу черв'яка Р1, = 7 кВт, кутова швидкість ?1, = 100 рад / с, передавальне число u = 20.

Навантаження постійна, нереверсивна. Технічний ресурс передачі
Lh = 20000 ч.

Рішення. Так як передавальне число редуктора невелика, то приймаємо двухзаходная черв'як, т. Е. Z1 = 2. Тоді число зубів черв'ячного колеса

z2 = uz1= 20 - 2 = 40.

Коефіцієнт діаметра черв'яка приймемо q = z2/ 4 = 40/4 = 10, що відповідає стандартному значенню.

Визначимо кутову швидкість черв'ячного колеса

?2 = ?1/ U = 100/20 = 5 рад / с.

Орієнтовно прийнявши ККД передачі ? = 0,82, знаходимо крутний момент на валу черв'ячного колеса

T2 = P1? / ?2 = 7 • 103• 0,82 / 5 = 1150 Н • м.

Припускаючи, що швидкість ковзання в зачепленні буде дорівнює приблизно 5 м / с, приймемо для вінця черв'ячного колеса алюмінієву бронзу БрАЖ9-4 (виливок в пісок). Центральну частину черв'ячного колеса виконаємо з сірого чавуну СЧ10. Для черв'яка приймаємо сталь 45Х, загартовану до твердості

H = 45HRC, з подальшим шліфуванням робочих поверхонь витків.

За табл. 8.6 знаходимо допустиме контактне напруження [?н] = 140 МПа (інтерполяція) і обчислюємо попереднє міжосьова відстань, прийнявши коефіцієнт навантаження К = 1 (навантаження постійна): I

Визначаємо модуль зачеплення

m = 2a / (q + z2) = 2 • 237 / (10 + 40) = 9,48 мм.

Приймаємо найближче стандартне значення модуля m = 10 мм, тоді остаточне міжосьова міжосьова відстань

а = 0,5m (q + z2) = 0,5 • 10 (10 + 40) = 250 мм,
 що відповідає стандарту.

Визначимо ділильний кут підйому лінії витка
 tg? = z1/ Q = 2/10 = 0,2; ? = 11 ° 18'36 ".

Так як ділильний діаметр черв'яка d = mq = 10 • 10 = 100 мм, то швидкість
 ковзання в зачепленні

?s, = ?u, / Cos = ?1d1/ (2cos?) = 100 • 0, l / (2cos11 ° 18'36 '') = 5, l м / с, що приблизно відповідає попередньо прийнятим значенням.

Перевіряємо ККД передачі, прийнявши по табл. 8.3 приведений кут тертя для безолов'яним бронзи ?'?2 ° 16 '(інтерполяція). Тоді ? = tg / tg (+ ? ') == tg11 ° 18'36' '/ tg13 ° 34'36 "?0,83, що досить близько до попередньо прийнятим значенням.

Перейдемо до перевірки міцності зубів колеса на вигин. Визначимо еквівалентну кількість зубів колеса і по табл. 8.4 коефіцієнт форми зуба

zv2 = z2/ cos3 ? = 40 / cos3 11 ° 18'36 "= 42,5;
НF2= 1,515 (інтерполяція).

За табл. 8.7 знаходимо допустиме напруження згину при нереверсивного нагрууженіі і базі випробувань NFlim = 106 циклів

[?F0] = 78 МПа.

Визначаємо задане число циклів навантаження колеса при частоті обертання

n2= 30?2/ ? = 30 • 5 / ??48 хв-1.

NK = 60n2Lh = 60 • 48 • 20 000 = 57,6 • 106. Обчислимо коефіцієнт довговічності

YN=

Тоді напруга, що допускається вигину дорівнюватиме

[?F] = YN [?F0] = 0,64 - 78 = 50 МПа.

Перевіряємо напруження згину

?F = 1,5KT2YF2cos? / (m3qz) = 1,5 • 1 • 1150 • 1,515 • cos 11 ° 18'36 "/ (103• 10-9• 10 • 40) = 6,4 • 106 Па = 6,4 МПа <[?F] = 50 МПа

Міцність зубів колеса забезпечена.

Далі визначимо інші основні розміри черв'яка і черв'ячного колеса.

а) Черв'як (див. рис. 8.4):

Діаметр вершин витків dA1 = d1 + 2m = 100 + 2 - 10 = 120 мм;

Діаметр западин df1 = d1 - 2,4m = 100 - 2,4 • 10 = 76 мм;

Довжина нарізаної частини b1 ? (11 + 0,06z2) = (11 + 0,06 • 40) • 10 = 134 мм.

T.к. черв'як шліфований, то приймаємо b1 = 134 + 36 = 170 мм;

б) Черв'ячне колесо (рис. 8.5): ділильний діаметр

d2= mz2 = 10 40 = 400 мм;

діаметр вершин зубів в середньому перерізі

da2= d2+ 2m = 400 + 2 • 10 = 420 мм;

діаметр западин в середньому перерізі

df2 = d2 - 2m = 400 - 2,4 • 10 = 376

найбільший діаметр

dae2 = da2 + 6m / (z1 +2) = 420+ 6 • 10 / (2 + 2) = 435 мм; ширина вінця

b2 = 0,75 da1 = 0,75 • 120 = 90 мм

Остаточно перевіримо зуби колеса на контактну втому за формулою

?H =

Міцність зубів на контактну втому забезпечена. Недовантаження 8,6%.

Глава 9 планетарної І ХВИЛЬОВІ зубчасті передачі

планетарні передачі

Планетарними називають передачі, мають колеса з переміщаються геометричними осями.

На рис. 9.1, а-в зображена схема чотириланкової найпростішої планетарної зубчастої передачі, що складається з центрального обертового колеса 1 з нерухомою геометричною віссю; сателітів 2, осі яких переміщаються; нерухомого колеса 3 з внутрішніми зубами;
 обертового водила h, на якому встановлені сателіти. очевидно,
 що при роботі планетарної передачі сателіти 2 здійснюють складне (плоскопараллельное) рух.

Провідним в планетарній передачі може бути або центральне колесо, або водило. При заданій кутовий швидкості провідної ланки кутові швидкості всіх інших ланок отримують цілком певні значення, тому що розглядається планетарна передача має постійне передавальне відношення.

Якщо в планетарній передачі (рис. 9.1) звільнити нерухоме колесо 3 і повідомити йому додаткове обертання, то розглянутий механізм перетвориться в диференційний, передавальне відношення якого буде одночасно залежати від кутових швидкостей двох ланок.

Малюнок 9.1 - Планетарна передача- графік окружних швидкостей точок вертикального радіуса коліс (а) вид збоку, (б) вид зверху

Планетарні передачі можуть бути одно- і багатоступінчатими.

Переваги планетарних передач полягають в малій масі і габаритах конструкцій в порівнянні з непланетарних зубчастими передачами, а також в можливості отримання великих передавальних чисел (до 1000 і більше). Використання в передачі декількох рівномірно розташованих сателітів розподіляє передану потужність на кілька потоків і дозволяє врівноважити радіальні навантаження на вали і їх опори.

Недоліки планетарних передач: підвищені вимоги до точності виготовлення і збірки конструкції, а також порівняно невисокий ККД у багатоступеневих передач.

Планетарні зубчасті механізми широко поширені в машинобудуванні і приладобудуванні.

Передавальні відносини. Для визначення передавального відношення і зображеної на рис. 9.1 передачі скористаємося методом звернення рухів (в застосуванні до планетарних передач він називається методом Вілліса).

Нехай провідною ланкою передачі є зубчасте колесо 1 обертається з кутовою швидкістю ?1 кутову швидкість водила позначимо ?h.

Подумки повідомимо всьому механізму обертальний рух протівположно напрямку обертання водила з кутовий швидкістю ?h.. При цьому водило зупиниться і планетарна передача перетвориться в передачу з нерухомими геометричними осями, причому провідне колесо 1 обертатиметься
 з кутовий швидкість ?1.- ?h., А колесо 3 - з кутовий швидкістю ?h.

При зупиненому водію побудуємо графік окружних швидкостей точок вертикального радіуса коліс, як показано на рис. 9.1, а. З цього графіка видно, що окружні швидкості всіх коліс дорівнюватимуть, т. Е. ?A= ?B.

Позначивши радіуси коліс 1 і 3 r1 і r3, отримаємо

?A = (?1.- ?h) r1, ?B = ?h r3 .

Прирівнявши праві частини цих рівностей, враховуючи, що радіуси зубчастих коліс пропорційні числам їх зубів, отримаємо формулу для визначення передавального відношення і планетарної передачі (при провідному колесі 1):

u = ?1./ ?h = 1 + z3/ z1,

де z1, z3- Числа зубів центрального і нерухомого коліс.

 У переважній більшості випадків на практиці застосовують планетарні передачі (з постійним передавальним відношенням), складені з циліндричних зубчастих коліс. Конічні зубчасті колеса використовують переважно в диференціальних механізмах.



Попередня   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   Наступна

Розрахунок допустимих напружень | Конічні зубчасті передачі | Розрахунок зубів конічної передачі на втому при згині. | Передачі з зачепленням Новікова | Загальні відомості про циліндричних і конічних редукторах | Загальні відомості | Геометрія і кінематика черв'ячних передач | Сили в черв'ячному зачепленні. ККД | Розрахунок черв'ячних передач | Розрахунок зубів черв'ячного колеса на втому при згині. |

загрузка...
© um.co.ua - учбові матеріали та реферати